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Série 3a Solutions 

Exercise 3a.1 – Tensile test on rods 

In a standard tensile test, a steel rod of 50 mm in diameter and 2000 mm long is subjected to a tension 

force 𝐹1 = 47.1 𝑘𝑁. Knowing that 𝜈 = 0.3 and 𝐸𝑠𝑡 = 200 𝐺𝑃𝑎 determine: 

a) The elongation of the steel rod 

b) Change in diameter in the steel rod 

Then a second bar is tested, it consists of a steel and an aluminium section, as shown below. When an 

axial force 𝐹 is applied to the system, a strain gauge attached to the aluminium indicates an axial strain 

of 0.000873. The shear modulus of aluminium is 𝐺𝑎𝑙𝑢 = 26.9 𝐺𝑃𝑎 . The aluminium’s Poisson’s ratio 

can be considered similar to steel with 𝜈 = 0.3 

c) Determine the magnitude of the applied force 𝐹 

d) Find the total elongation of the steel and aluminium bar. 

 

Figure 3a.1 | First rod 1) and the second composite bar 2) profiles 
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Solution 3a.1 

Free body diagram 

 

Figure 3a.1.1| Free Body Diagram 

Questions a) and b) 

Objectives – what is asked? 

Total elongation of the steel rod 

Change of diameter of the steel rod 

What is given? 

Geometry, length of material, diameter of the bar 

Poisson ratio 

Young’s modulus for steel  

Principles and formula 

Displacement to elongation for 1D systems 

𝛥𝐿

𝐿
= 𝜀𝑥 (1) 

Hooke’s law for 1D system 

𝜎𝑥 = 𝐸 · 𝜀𝑥 (2) 

Stress to load 

𝜎𝑥 =
𝑁

𝐴
 𝑤ℎ𝑒𝑟𝑒 𝐴 =

𝜋𝑑2

4
 (3) 

Equilibrium condition 

𝐹 = 𝑁  

Calculations 

𝜎𝑥 =
𝑁

𝐴
=
4 ∗ 47.1 ∗ 103𝑁

(0.05𝑚)2 ∗ 3.14
= 24 𝑀𝑃𝑎 (4) 

𝜀𝑥 =
𝜎𝑥
𝐸
=
24 𝑀𝑃𝑎

200 𝐺𝑃𝑎
= 1.2 ∗ 10−4 (5) 

𝛥𝐿 = 𝜀𝑥 ∗ 𝐿 =→ 1.2 ∗ 10
−4 ∗ 2 𝑚 = 240 𝜇𝑚 (6) 

𝜀𝑟 = −𝜈𝜀𝑥 = −0.3 ∗ 1.2 ∗ 10
−4 = −3.6 ∗ 10−5 (7) 

𝛥𝑑 = 𝜀𝑟 ∗ 𝑑 = −3.6 ∗ 10
−5 ∗ 0.05 𝑚 = −1.8 𝜇𝑚  (8) 
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Questions c) and d) 

Objectives – what is asked? 

Value of applied load (𝐹) 

Total elongation 

What is given? 

Geometry, length of materials, diameter of the bar 

Strain for aluminium 

Young’s moduli for steel and aluminium 

Principles and formula 

Displacement to elongation for 1D systems 

𝛥𝐿

𝐿
= 𝜀𝑥  

Hooke’s law for 1D system 

𝜎𝑥 = 𝐸 · 𝜀𝑥  

General Hooke’s law  

2(1 + ν) =  
𝐸

𝐺
 (9) 

Stress to load 

𝜎𝑥 =
𝑁

𝐴
 with F = N at equilibrium 

Calculations 

From Hooke’s law we have: 

𝜀𝑥 =
𝜎𝑥
𝐸
=
𝑁

𝐴𝐸
=

𝑁

2𝐴𝐺(1 + ν)
 (10) 

Which implies that F can be deduced from the aluminium bar since the strain is given: 

𝐹 = 𝑁 = 𝐴 · 𝐺𝐴𝑙 · 2(1 + ν) · 𝜀𝐴𝑙  (11) 

We can then obtain the total elongation by adding the elongation of each segment: 

𝛥𝐿 = 𝛥𝐿𝑆𝑡 + 𝛥𝐿𝐴𝑙 = 𝜀𝑆𝑡𝐿𝑆𝑡 + 𝜀𝐴𝑙𝐿𝐴𝑙  (12) 

The strain in the aluminium segment is known (𝜀𝐴𝑙) and the stress in steel can be calculated by 

noticing that the internal force 𝑁 is constant along the bar and that and by combining Eq. (1) and Eq. 

(2) where steel and aluminium are considered to have similar Poisson’s ratio: 

𝛥𝐿 =
𝜎𝑠𝑡
𝐸𝑠𝑡
𝐿𝑆𝑡 + 𝜀𝐴𝑙𝐿𝐴𝑙 =

𝑁

𝐴 · 𝐸𝑠𝑡
𝐿𝑆𝑡 + 𝜀𝐴𝑙𝐿𝐴𝑙 ==

𝐺𝐴𝑙 · 2(1 + ν)

𝐸𝑠𝑡
𝜀𝐴𝑙𝐿𝑆𝑡 + 𝜀𝐴𝑙𝐿𝐴𝑙  (13) 

Numerical applications 

𝐹 = 3.14 ∗ 0.0252 ∗ 26.9 ∗ 109 ∗ 2(1 + 0.3) ∗ 0.000873 = 120 𝑘N (14) 

𝛥𝐿 =
26.9 ∗ 2(1 + 0.3)

200
∗ 0.000873 ∗ 1.5 + 0.000873 ∗ 0.5 =  0.895mm 

 

(15) 
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Exercise 3a.2 – Axially loaded bar + hydrostatic load  

a) For the axial loading shown in Figure 3a.2, determine the change in height and the change 

in volume of the brass cylinder shown. 

b) Solve the part a) assuming that the loading is hydrostatic with a 𝝈𝒙 = 𝝈𝒚 = 𝝈𝒛 = −𝟕𝟎𝑴𝑷𝒂. 

 

Figure 3a.2| Axially loaded bar 
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Solution 3a.2 

Let’s calculate first the geometrical values: 

ℎ0 = 135 𝑚𝑚 = 0.135 𝑚 (1) 

𝐴0 =
𝜋

4
𝑑0
2 =

𝜋

4
∗ (85)2  = 5.6745 ∗ 103 𝑚𝑚2  =  5.674 ∗ 10−3 𝑚2  (2) 

𝑉0 = 𝐴0ℎ0 = 766.06 ∗ 10
3𝑚𝑚3 = 766.1 ∗ 10−6 𝑚3 (3) 

a) From the image we know that: 

𝜎𝑥 = 0, 𝜎𝑦 = −58 ∗ 10
6 𝑃𝑎 𝑎𝑛𝑑 𝜎𝑧 = 0 (4) 

𝜖𝑦 =
1

𝐸
(−𝜈𝜎𝑥 + 𝜎𝑦 − 𝜈𝜎𝑧) =

𝜎𝑦

𝐸
= −

58 ∗ 106

105 ∗ 109
= −552.4 ∗ 10−6 (5) 

The change in height is then calculated 

∆ℎ = ℎ0𝜖𝑦 = 135 𝑚𝑚 ∗ −552.4 10
−6 = −0.075 𝑚𝑚 (6) 

 

Where the change of volume is: 

∆𝑉

𝑉
= 𝜖𝑥 + 𝜖𝑦 + 𝜖𝑧 =

1 − 2𝜈

𝐸
(𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧) =

1 − 2𝜈

𝐸
(𝜎𝑦) (7) 

= 0.34 ∗
(−58 ∗ 106)

105 ∗ 109
= −187.8 ∗ 10−6 

∆𝑉 = −187.8 ∗ 10−6 ∗ 766.1 ∗ 10−6  ≃ −144 𝑚𝑚3  (8) 
 

b) Now the loads applied on the bar are: 𝜎𝑥 = 𝜎𝑦 = 𝜎𝑧 = −70 ∗ 10
−6 𝑃𝑎 

𝜖𝑦 =
1

𝐸
(−𝜈𝜎𝑥 + 𝜎𝑦 − 𝜈𝜎𝑧) =

1 − 2𝜈

𝐸
(𝜎𝑦) = 0.34 ∗

(−70 ∗ 106)

105 ∗ 109
= −226.7 ∗ 10−6  (9) 

∆ℎ = ℎ0𝜖𝑦 = 135 𝑚𝑚 ∗ −226.7 ∗  10
−6 ≃ −0.031 𝑚𝑚 (10) 

 

∆𝑉

𝑉
= 𝜖𝑥 + 𝜖𝑦 + 𝜖𝑧 =

1 − 2𝜈

𝐸
(𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧) = 3 ∗

1 − 2𝜈

𝐸
(𝜎𝑦) = −680 ∗ 10

−6  (11) 

∆𝑉 = −680 ∗ 10−6 ∗ 766.1 ∗ 10−6  ≃ −521 𝑚𝑚3  

 
 (12) 
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Exercice 3a.3 – Stress and strain on a constrained block 

A block of magnesium alloy with E = 45 [GPa] and v = 0.35 is attached to a steel bracket, as shown 

in Figure 3a.3. Knowing that a load is applied which causes a stress of σx = -180 [MPa]. The length of the 

sides are given as Lx,0 = 0.1 m, Ly,0 = 0.04 [m] and Lz,0 = 0.025 m. 

 

a) Find the magnitude of σy for which the change in height of the block is zero. 

b) Find the corresponding change of the surface area of the face ABCD 

c) Find the corresponding change of volume for the block 

d) Suppose we want to keep the volume change as before but now the height can be 

changed. Instead of applying σx and σy, we apply two stresses σx= -180 [MPa] and σz. 

Calculate what the value of σz should be in the case where σx = -180 [MPa]. 

  

 

Figure 3a.3 | A magnesium alloy block attached to steel bracket 
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Solution 3a.3 

a) Find the magnitude of σy for which the change in height of the block is zero. 

We start from the y component of the compliance matrix as we are asked to find what normal stress 

on the y plane doesn’t cause a strain in the y direction (𝜀𝑦 = 0). Note that there are only two stresses 

applied on the body (𝜎𝑥  and 𝜎𝑦) 

𝜀𝑦 = 0 =
1

𝐸
(−𝜈𝜎𝑥 + 𝜎𝑦 − 𝜈𝜎𝑧) (1) 

 

First we rewrite the formula in terms of 𝜎𝑦  

𝜎𝑦 = 𝐸𝜀𝑦⏟
=0

+ 𝜈(𝜎𝑥 + 𝜎𝑧⏟
=0

) 
(2) 

 

Then we can calculate the required stress in y to keep the strain zero 

𝜎𝑦 = 𝜈𝜎𝑥 = 0.35 ∗ (−180 ∗ 10
6) = −63 ∗ 106 = −63 [MPa] (3) 

 

b) Find the corresponding change of the surface area of face ABCD 

As the cube is only allowed to deform in the x and z directions we first need to determine the strains 

in these directions. 

𝜀𝑥 =
1

𝐸
{𝜎𝑥 − 𝜈(𝜎𝑦 + 𝜎𝑧)} =

1

𝐸
{−180 − 0.35(−63 + 0)} ∗ 106 = −0.0035 (4) 

𝜀𝑧 =
1

𝐸
{𝜎𝑧 − 𝜈(𝜎𝑥 + 𝜎𝑦)} =

1

𝐸
{0 − 0.35(−180 − 63)} ∗ 106 = 0.0019 (5) 

 

We know that for a simple one dimensional case the change in length of a material is given as 

∆𝐿

𝐿0
=
𝐿 − 𝐿0
𝐿0

= 𝜀            or more simply            𝐿 = 𝐿0(1 + 𝜀)  (6) 

 

This also applies to higher dimensional cases such that we can determine the surface area of the 

deformed surface as 

∆𝐴 + 𝐴0 = 𝐿𝑥 ∙ 𝐿𝑧 = 𝐿𝑥,0(1 + 𝜀𝑥) ∙ 𝐿𝑧,0(1 + 𝜀𝑧) = 𝐿𝑥,0𝐿𝑧,0(𝜀𝑥𝜀𝑧 + 𝜀𝑥 + 𝜀𝑧 + 1) (7) 

 

Since A0 is given from the start we can determine the change in surface area and filling in the values 

to obtain the change in area 

∆𝐴 = 𝐿𝑥 ∙ 𝐿𝑧 − 𝐴0 = 𝐿𝑥,0𝐿𝑧,0(𝜀𝑥𝜀𝑧 + 𝜀𝑥 + 𝜀𝑧) (8) 

∆𝐴 = 0.1 ∗ 0.025(−0.0035 ∗ 0.0019 − 0.0035 + 0.0019) ≈ −4.02 ∗ 10−6 [m2] (9) 
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c) Find the corresponding change of volume for the block 

As we know that there is no change in the direction of y (εy = 0), we can simply multiply the change 

in the surface area by the initial height of the block Ly,0. 

∆𝑉 = 𝐿𝑦,0∆𝐴 = 0.04 ∗ −4.02 ∗ 10
−6 = −1.608 ∗ 10−7[m3] (10) 

 

d) Suppose we want to keep the volume change as before but now the height can be 

changed. Instead of applying σx and σy, we apply two stresses σx= -180 [MPa] and σz. 

Calculate what the value of σz should be in the case where σx = -180 [MPa]. 

The volume change for the block is defined as 

∆𝑉 = {𝜀𝑥 + 𝜀𝑦 + 𝜀𝑧}𝑉 (11) 

 

The formulas for the strain components are for this case, where 𝜎𝑦 = 0 

𝜀𝑥 =
1

𝐸
{𝜎𝑥 − 𝜈(𝜎𝑦 + 𝜎𝑧)} =

1

𝐸
{𝜎𝑥 − 𝜈𝜎𝑧} 

𝜀𝑦 =
1

𝐸
{𝜎𝑦 − 𝜈(𝜎𝑥 + 𝜎𝑧)} = −

𝜈

𝐸
{𝜎𝑥 + 𝜎𝑧} 

𝜀𝑧 =
1

𝐸
{𝜎𝑧 − 𝜈(𝜎𝑥 + 𝜎𝑦)} =

1

𝐸
{𝜎𝑧 − 𝜈𝜎𝑥} 

(12) 

 

This allows us to fill in the components in equation (11) to retrieve 𝜎𝑧  

∆𝑉 =
1

𝐸
{𝜎𝑥 + 𝜎𝑧 − 2𝜈𝜎𝑥 − 2𝜈𝜎𝑧}𝑉 (13) 

{𝜎𝑥 + 𝜎𝑧 − 2𝜈𝜎𝑥 − 2𝜈𝜎𝑧} =
∆𝑉𝐸

𝑉
 (14) 

𝜎𝑥(1 − 2𝜈) + 𝜎𝑧(1 − 2𝜈) =
∆𝑉𝐸

𝑉
 (15) 

𝜎𝑧(1 − 2𝜈) =
∆𝑉𝐸

𝑉
− 𝜎𝑥(1 − 2𝜈) (16) 

𝜎𝑧 =
∆𝑉𝐸

𝑉(1 − 2𝜈)
− 𝜎𝑥  (17) 

 

If we then fill in the known values using the data for the volume from c), we find the value for 𝜎𝑧: 

𝑛𝑜𝑡𝑒: ∆𝑉 =  −1.62 ∗ 10−7 𝑚3 when using the values  𝜎  to compute it. 

𝜎𝑧 =
−1.608 ∗ 10−7 ∗ 45 ∗ 109

(0.1 ∗ 0.04 ∗ 0.025)(1 − 2 ∗ 0.35)
− (−180 ∗ 106) 

𝜎𝑧 = −241.2 ∗ 10
6 + 180 ∗ 106 = −61.2 [MPa] 

(18) 
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Exercise 3a.4 – Multi-segment bar    

Consider the following bar structure (Figure 3a.4) with force 3F acting upon point B and force F 

acting upon point D. Section CD is made of two identical bars in parallel of area A and Young’s modulus 

E that are secured by rigid plates. Section AC consists of a single bar of area A and Young’s modulus E. 

What is the overall displacement of Point D, and the internal stress in one of the bars in section 

CD? 

 
Figure 3a.4| Multi-segment structure. 

  

x 
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Solution 3a.4 

What is given? 

Bars cross-section areas: A 

Applied forces: F and 3F 

Young’s modulus E 

What is asked? 

Displacement of point D ∆𝑇𝑜𝑡𝑎𝑙 and internal stress in region CD. 

Region CD 

 
Figure 3a.4.1 |Sliced section in the multi-segment bar 

What are the Eqs. that are required? 

The stiffness of a segment AB: 

𝑘𝐴𝐵 =
𝐴𝐸

𝐿𝐴𝐵
 (1)  

Where A is the cross-section area of segment AB, 𝐿𝐴𝐵, is the length and E the Young’s modulus. 

The internal force of a segment AB with respect to the displacement: 

𝑁𝐴𝐵 = 𝑘𝐴𝐵∆𝐴𝐵 (2)  

The internal stress of a substructure: 

𝜎 =
𝑁

𝐴
 (3)  

Find Reaction at Point A 

∑ 𝐹𝑥 = 0 (4)  

𝑅𝐴 − 3𝐹 + 𝐹 = 0 → 𝑅𝐴 = 2𝐹 (5)  

Applying the Method of Sections to Region AB we can easily see that there is an internal force of            

𝑁𝐴𝐵 = −2𝐹. 

 

 

Region AB 

Stiffness of Region AB 
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𝑘𝐴𝐵 = 
𝐴𝐸

𝐿
2

=  
2𝐴𝐸

𝐿
 (6)  

Calculate elongation of Region AB 

𝑁𝐴𝐵 = 𝑘𝐴𝐵∆𝐴𝐵 (7)  

∆𝐴𝐵=
−2𝐹

(
2𝐴𝐸
𝐿
)
=
−𝐹𝐿

𝐴𝐸
 (8)  

Region BD 

Stiffness of Region BD 

1

𝑘𝐵𝐷
= 

1

𝑘𝐵𝐶
+ 

1

𝑘𝐶𝐷 + 𝑘𝐶𝐷
 (9)  

1

𝑘𝐵𝐷
= 

1 

𝐴𝐸

(
𝐿
2
)

+ 
1

𝐴𝐸
𝐿
+
𝐴𝐸
𝐿

→ 𝑘𝐵𝐷 =
𝐴𝐸

𝐿
 

(10)  

Calculate Displacement of Region BD 

Applying the Method of Sections to Region BD we can easily find that 𝑁𝐵𝐷 = 𝐹 

𝑁𝐵𝐷 = 𝑘𝐵𝐷∆𝐵𝐷 (11)  

∆𝐵𝐷=
𝐹

(
𝐴𝐸
𝐿 )

=
𝐹𝐿

𝐴𝐸
 (12)  

Superimpose all Displacements 

∆𝑇𝑜𝑡𝑎𝑙= ∆𝐴𝐵 + ∆𝐵𝐷 (13)  

∆𝑇𝑜𝑡𝑎𝑙=
−𝐹𝐿

𝐴𝐸
+
𝐹𝐿

𝐴𝐸
= 0 (14)  

Calculate the stress in region CD: 

𝜎𝐶𝐷 =
𝑁𝐶𝐷/2

𝐴
=
𝐹/2

𝐴
=
𝐹

2𝐴
 (15)  
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Exercise 3a.5 – Elongation of a composite bar  

We consider the circular bar of  Figure 3a.5, composed of two materials. The material properties are: 

𝐸𝐴 =
10

9
𝐺𝑃𝑎, 𝐸𝐵 = 2.5 𝐺𝑃𝑎, 𝜈𝐴 = 𝜈𝐵 = 0.25; and the dimensions: 𝐿 = 1 𝑚, 𝑅 = 5 𝑚𝑚, 𝑟 = 3 𝑚𝑚. We 

apply a force 𝐹 = 360𝜋 𝑁 at the free-end of the bar:   

a) Calculate the total elongation of the bar. 

b) Calculate the strain in materials A and B when 𝒙 =
𝑳

𝟐
. Give a numerical value. 

c) Calculate the stress in materials A and B when 𝒙 =
𝑳

𝟐
. Give a numerical value. 

 

Figure 3a.5 | The composite bar with a vertical section of its profile 
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Solution 3a.5 

Apply force equilibrium Eq. to the entire structure 

  

∑ 𝐹𝑥 = 0 → 𝑅0 + 𝐹 = 0 → 𝑅0 = −𝐹 (1) 

(a) Calculate the total elongation of the bar  
 

For the evaluation of the total elongation of the bar both flexibility and stiffness method can be used. 

Reminding that: 

𝑘 =
1

𝑓
=
𝐸𝐴

𝐿
 (2) 

𝐹 = 𝑘𝑒𝑞𝛿 →  𝛿 =
𝐹

𝑘𝑒𝑞
 (3) 

Since it’s a composite bar, made by two different bars in parallel, we can write the equivalent 

stiffness as: 

𝑘𝑒𝑞 = 𝑘𝐴 + 𝑘𝐵 =
𝐸𝐴𝐴𝐴
𝐿

+
𝐸𝐵𝐴𝐵
𝐿

 (4) 

Where 𝐴𝐴 and 𝐴𝐵 are the areas of the sections relative to the two materials. 

So we can write the full equation to obtain the elongation: 

𝛿 =
𝐹

𝑘𝑒𝑞
=

𝐹

𝐸𝐴𝐴𝐴
𝐿 +

𝐸𝐵𝐴𝐵
𝐿

=
𝐹𝐿

𝐸𝐴𝐴𝐴 + 𝐸𝐵𝐴𝐵
 (5) 

 

=
360𝜋𝑁 ∙ 1𝑚

(𝜋 ∙ 9 ∙ 10−6𝑚2 ∙
10
9 ∙ 10

9𝑃𝑎) + (𝜋 ∙ 16 ∙ 10−6𝑚2 ∙ 2.5 ∙ 109𝑃𝑎)
= 7.2 ∙ 10−3 𝑚 

 

(b) Calculate the strain in materials A and B when 𝑥 =
𝐿

2
  

Since the composition of the composite bar do not change along the x axis, the strain is not 

dependent form x, 𝜀(𝑥) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.  

Reminding  that: 

𝜀 =
𝛿

𝐿0
 (6) 
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And that because the bar is a composite bar, the cylinder and the tube must shorten by the same 

amount and by indicating the two shortenings with 𝛿𝐵  and 𝛿𝐴, we obtain the following equation of 

compatibility: 

𝛿𝐴 = 𝛿𝐵 (7) 

We can deduce that  

𝜀𝐴 = 𝜀𝐵 (8) 

Since the total elongation of the bar has been calculated in (a) and 𝐿0 = 1𝑚 

 

𝛿 = 𝛿𝐴 = 𝛿𝐵 

 

We can write: 

𝜀𝐴 = 𝜀𝐵 =
𝛿

𝐿0
=
7.2 ∙ 10−3𝑚

1𝑚 
= 0.0072 (9) 

(c) Calculate the stress in materials A and B when 𝑥 =
𝐿

2
  

 

For section at x=L/2 

 

The force 𝑁1 that is uniformly distributed along all the cross section of the bar, it can be decomposed 

in: 

𝑁1 = 𝑁𝐴 +𝑁𝐵 = 360𝜋𝑁  (10) 

Where the force 𝑁𝐴  is the resultant of the uniformly distributed stresses acting over the cross 

section of the inner cylinder and the force 𝑁𝐵 is the resultant of the stresses acting over the cross section 

of the tube. 

As already said, the cylinder and the tube must shorten by the same amount.  

 

𝛿𝐴 = 𝛿𝐵 

The general formula for 𝛿 is: 
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𝛿 =
𝐹𝐿

𝐸𝐴
    (11) 

By substituting we can obtain the values of the force applied on each part of the bar: 𝑁𝐵 and 𝑁𝐴. 

𝛿𝐴 =
𝑁𝐴𝐿

𝐸𝐴𝐴𝐴
 

𝛿𝐵 =
𝑁𝐵𝐿

𝐸𝐵𝐴𝐵
 

𝑁𝐴
𝐸𝐴𝐴𝐴

=
𝑁𝐵
𝐸𝐵𝐴𝐵

 (12) 

Combined with: 

𝑁1 = 𝑁𝐴 +𝑁𝐵  

Give us : 

𝑁𝐴 = 𝑁1 (
𝐸𝐴𝐴𝐴

𝐸𝐴𝐴𝐴 + 𝐸𝐵𝐴𝐵
) = 𝑁1(

𝐴𝐴

𝐴𝐴 +
𝐸𝐵
𝐸𝐴
𝐴𝐵

) 

= 360𝜋

(

 
 9𝜋

9𝜋 +
2.5
10
9

16𝜋

)

 
 
= 360𝜋 ∙

1

5
= 72𝜋 = 226𝑁  

(13) 

𝑁𝐵 = 𝑁1 (
𝐸𝐵𝐴𝐵

𝐸𝐴𝐴𝐴 + 𝐸𝐵𝐴𝐵
) = 𝑁1(

𝐴𝐵

𝐴𝐵 +
𝐸𝐴
𝐸𝐵
𝐴𝐴

) 

= 360𝜋

(

 
 16𝜋

16𝜋 +

10
9
2.5

9𝜋
)

 
 
= 360𝜋 ∙

4

5
= 288𝜋 = 904𝑁 

(14) 

 

i. In the inner core (material A)  

𝜎𝐴 =
𝑁𝐴
𝐴𝐴
= (

𝑁1

𝐴𝐴 +
𝐸𝐵
𝐸𝐴
𝐴𝐵

) =
72𝜋

𝜋 ∙ 9 ∙ 10−6
= 8𝑀𝑃𝑎 (15) 

𝜎𝐴 = 𝜀 ∙ 𝐸𝐴 = 8 ∙ 9 ∙ 10
−4 ∙

10

9
∙ 109 = 8𝑀𝑃𝑎 (16) 

ii. In the shell (material B)  

𝜎𝐵 =
𝑁𝐵
𝐴𝐵
= (

𝑁1

𝐴𝐵 +
𝐸𝐴
𝐸𝐵
𝐴𝐴

) =
288𝜋

𝜋 ∙ 16 ∙ 10−6
= 18𝑀𝑃𝑎  (17) 

𝜎𝐵 = 𝜀 ∙ 𝐸𝐵 = 8 ∙ 9 ∙ 10
−4 ∙

5

2
∙ 109 = 18𝑀𝑃𝑎 (18) 

 

  



 

Danick Briand Solutions CdM1 Série 3a 
 

 

Conception de Mécanismes I - 2024 Page 16 of 17 © EPFL-STI-SMT 

Exercise 3a.6 – Plane Strain 

In many situations physical constraints prevent strain from occurring in a given direction. For example, 

𝜀𝑧 = 0 in the case shown in Figure 3a.6, where longitudinal movement of the long prism is prevented at 

every point. Plane sections perpendicular to the longitudinal axis remain plane and at the same distance 

apart.  

Show that for this situation (i.e. 𝜺𝒛 = 𝟎) which is known as plane strain the following equations 

are true. 

𝜎𝑧 = 𝜈(𝜎𝑥 + 𝜎𝑦) 
 

𝜀𝑥 =
1

𝐸
[(1 − 𝜈2)𝜎𝑥 − 𝜈(1 + 𝜈)𝜎𝑦] 

 

𝜀𝑦 =
1

𝐸
[(1 − 𝜈2)𝜎𝑦 − 𝜈(1 + 𝜈)𝜎𝑥] 

 

Hint: Start with the generalized Hooke’s Law for strain. 

 

  

 

Figure 3a.6 | (a) Plane strain on a prism, (b) cross-section of the prism 
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Solution 3a.6 

 

We are given prism with 𝜎𝑥 and 𝜎𝑦 that yields 𝜀𝑧 = 0. From the generalized Hooke’s Law for 

strain, we can derive the equations for 𝜎𝑧, 𝜀𝑥, and 𝜀𝑦. First start with compliance matrix and then 

substitute known values from the system in order to achieve the above proof. 

(

𝜀𝑥
𝜀𝑦
𝜀𝑧
) =

1

𝐸
(
1 −𝜈 −𝜈
−𝜈 1 −𝜈
−𝜈 −𝜈 1

)(

𝜎𝑥
𝜎𝑦
𝜎𝑧
) (1) 

From the third row of matrix we have the following 

𝜀𝑧 = 0 =
1

𝐸
(−𝜈𝜎𝑥 − 𝜈𝜎𝑦 + 𝜎𝑧) 

𝜎𝑧 =  𝜈(𝜎𝑥 + 𝜎𝑦) 
(2) 

From the first row of matrix we have the following 

𝜀𝑥 =
1

𝐸
(𝜎𝑥 − 𝜈𝜎𝑦 − 𝜈𝜎𝑧) (3) 

Including the expression provided for 𝜎𝑧 we can find the following 

𝜀𝑥 =
1

𝐸
(𝜎𝑥 − 𝜈𝜎𝑦 − 𝜈

2(𝜎𝑥 + 𝜎𝑦)) =
1

𝐸
((1 − 𝜈2)𝜎𝑥 − 𝜈(1 + 𝜈)𝜎𝑦) (4) 

From the second row of matrix we have the following 

𝜀𝑦 =
1

𝐸
(−𝜈𝜎𝑥 + 𝜎𝑦−𝜈𝜎𝑧) (2) 

Including the expression provided for 𝜎𝑧 we can find the following 

𝜀𝑦 =
1

𝐸
(−𝜈𝜎𝑥 + 𝜎𝑦 − 𝜈

2(𝜎𝑥 + 𝜎𝑦)) =
1

𝐸
((1 − 𝜈2)𝜎𝑦 − 𝜈(1 + 𝜈)𝜎𝑥) (6) 

 

 


